B.Sc. (Hons) Physics, Class: VI Sem, Sec.-A

Paper: Statistical Mechanics

Teacher: Dr. Arpita Vajpayee

As we have started the "Bose-Einstein Statistics". Following topics will be discussed in this week:

- 1) Radiation as a photon gas
- 2) Partition function and Thermodynamic functions of photon gas
- 3) Bose derivation of Planck's law

Please read the above mentioned topics.

I am available for discussion on the class WhatsApp group at the time of our scheduled class according to the timetable. You can post your doubts/queries on this group. E-books have already been shared on the class WhatsApp group.

Numerical problems:

Q-1) Blackbody radiation in an enclosure is made to undergo adiabatic change at a pressure of $1.49 \times 10^{-2} \text{ Nm}^{-2}$. Calculate the final pressure, if the volume of the enclosure (a) increases by a factor of 2 and (b) decreases by a factor of 2.

Q-2) Four weakly interacting particles are confined to a cubical box of volume V, with the energy of any one particle of the form –

$$E = \pi^2 \hbar^2 (n_x^2 + n_y^2 + n_z^2) / 2mV^{2/3}$$

Where n_x , n_y and n_z are natural numbers. What is the energy of the system at absolute zero if the system is Bosonics? Ignore spin.

Q-3) Consider a system of two weakly interacting particles. Each particle can be in one of two states with the energies 0 and ϵ respectively. Calculate the partition function of the system if the system is Bosonic.

Please send your solutions by e-mail.

Assignment problem:

A-1) How many photons are present in 1 cm³ of radiation at 727 °C? What is their average energy? { Given $\int \frac{x^2 dx}{ex-1} = 2.405$ }